Preventing Overexertion
Overexertion Injuries: Causes and Prevention

Presented by R. W. Smith, CSP
In this Webinar We Will Cover:

- Extent of overexertion Injuries
- What are overexertion injuries?
- How do overexertion injuries occur?
- What are the causes of overexertion injuries?
- What do people say who have had overexertion injuries?
In this Webinar We Will Cover:

• Some helpful guidelines for reducing overexertion risk.
• Effect of Temperature on Overexertion
• Effect of Fatigue on Overexertion
• Effect of Stress on Overexertion
• More Information
Extent of Over Exertion Injuries

- > 3.5 million injuries (all exposures)
- Leading cause of non-fatal injuries
- 2nd leading cause of missing work (after common cold)
- Average costs for these injuries range from over $13K for wrist injuries to over $23K for back injuries
What is an Overexertion Injury?

Sprains – stretching or tearing ligament
Strains – stretching or tearing tendons or muscles

Ligaments – very tough connective tissue which connect bone to bone, and hold the tendons in place and stabilize the joints.

Tendons – the tough connective tissue which connects muscle to bone

Muscles – the tissue responsible for movement of joints. They are attached to bone by tendons, and shorten to create movement of a joint.

Des Moines Water Works
Water You Can Trust for Life
How do Overexertion Injuries Occur?

Overexertion occurs when the load, whether lifted, carried, pushed, pulled or otherwise handled, exceeds the limits of the human joint system doing the work.

In this case the “lower back”
Other Overexertion Injuries

• Wrist
• Knee
• Ankle

• Neck
• Groin
• Shoulder
Causes

• These injuries can be caused by acute causes or chronic causes
• Generally, Overexertion Injuries are caused by Acute causes
• Ergonomics impacts both but more with chronic causes
Overexertion injuries have been associated with these activities:

- lifting
- repeated bending at the waist
- bending at the waist with twisting
- long term bending at the waist
- pushing/pulling
- carrying
- reaching
- long term poor posture - sitting or standing
- sitting while absorbing vibration through the body (as in truck driving)
Personal Factors

Some personal factors have been associated with overexertion injuries:

– aging and its loss of body flexibility (becoming stiff)
– poor physical condition
– overweight
What do people say who have had overexertion injuries?

– I was in a hurry
– I was in an awkward position

So...

Perform the task twice: Once With Your and Once With Your

As you think about the task, determine what has to be done to perform it safely and then follow through.
Some Helpful Guidelines for Reducing Overexertion Risk
Good Techniques For Lifting:

- Assess the weight of the load (by observing or pushing).
Good Techniques For Lifting:

- Have load so you can get grip
Good Techniques For Lifting:

- Keep back in line and have good grip
Good Techniques For Lifting:

- Look “up” or forward to keep back in line
Good Techniques For Lifting:

- Lift with legs & Keep load close
Good Techniques For Lifting:

• Stabilize load & Scan ahead
Good Techniques For Lifting:

• Avoid twisting.
• Avoid heavy loads (lighten if possible or break it down).
• Get help with heavy loads.

• Warm up and stretch muscles before lifting
The process of moving materials

- *Reaching* for the load by bending, reaching, or squatting
- *Lifting* the load
- *Transferring* the weight of the load to a carrying position
- *Carrying* the load to the needed location
- *Depositing* the load by
 - lowering it to the ground,
 - throwing it, or
 - handing it to another person
Plan the lift

- How much am I lifting?
- Where is it going?
- What is in the way?
- What is the surface like between me and my destination
Ideas for proper carrying:

If there is a mechanical device like a hand truck or pallet jack…use it! (the more you carry something, the greater the chance that you can be injured)

If there are no mechanical devices…

Keep the load as close to the body as possible.

Better to take more loads of less weight than try to take it all at once.
Ideas for reducing reaching

Remove obstacles

This bin has fold down door so the worker can get the product with less bending.
Ideas for reducing reaching

An adjustable height pallet jack with a turntable would allow this worker to turn and raise the load to get the product, instead of reaching.
Ideas for reducing reaching

Reduce shelf depth and try to store products between knee and shoulder height

Reduce package size

Traditional Static Storage
- Inaccessible
- Head Clearance
- Poor Visibility
- Unsafe Picks

Des Moines Water Works
Water You Can Trust for Life
Ideas for reducing reaching

Slide objects closer

The person in the bottom picture is using a stick with a hook, to pull products closer for access
Reducing reach

Reduce Shelf Depth

Install Gravity Feed Racks
Ideas for reducing lifting hazards

- Use mechanical assistance
- Use a mobile ladder
Ideas for reducing lifting hazards

This is a mobile scissors lift. Products can be removed from pallets or shelves and transported with no lifting.

This is a mobile, height adjustable (electric motor) platform, for transporting products.
Good Ideas for Pushing/Pulling:

If you have the option, push rather than pull.

The handles on the carts to the right have been modified so persons of different heights can push them with their hands at the appropriate height.
Reduce bending

Add handles

The manufacturer of this product included cutout handles in the box, so the handler could lift it from a higher level. Also, storing them on one or more pallets raises the level of the handles even more.
Reduce lifting, by sliding

Arrange storage

This person has placed a cart just below the level of the shelf, so she can just slide the box onto the cart deck rather than lift it.
Reduce lifting, by sliding

Heavy Battery
Reduce Lifting: Georgia Buggy
NIOSH Lifting Formula

- RWL = LC x HM x VM x DM x AM x FM x CM
- Washington State Dept. of Labor & Industries
- Ohio Lifting Guidelines
Calculator for analyzing lifting operations

1. Enter the weight of the object lifted. **Weight Lifted** lbs.
2. Circle the number on a rectangle below that corresponds to the position of the person's hands when they begin to lift or lower the objects.

 - Above shoulder: 65 lbs., 40 lbs., 30 lbs.
 - Waist to shoulder: 70 lbs., 56 lbs., 30 lbs.
 - Knee to waist: 90 lbs., 56 lbs., 40 lbs.
 - Below knee: 70 lbs., 56 lbs., 35 lbs.

3. Circle the number that corresponds to the times the person lifts per minute and the total number of hours per day spent lifting.

<table>
<thead>
<tr>
<th>How many lifts per minute?</th>
<th>How many hours per day</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 lift every 2-5 min</td>
<td>1.0</td>
</tr>
<tr>
<td>1 lift every min</td>
<td>0.55</td>
</tr>
<tr>
<td>2-3 lifts every min</td>
<td>0.9</td>
</tr>
<tr>
<td>4-6 lifts every min</td>
<td>0.85</td>
</tr>
<tr>
<td>6+ lifts every min</td>
<td>0.75</td>
</tr>
<tr>
<td>0-3 lifts every min</td>
<td>0.6</td>
</tr>
<tr>
<td>4-6 lifts every min</td>
<td>0.35</td>
</tr>
</tbody>
</table>

 Note: For lifting done less than once every five minutes, use 1.0.

 - 0.85 if the person twists more than 45 degrees while lifting.
 - Otherwise circle 1.0.

4. Circle 0.85 if the person twists more than 45 degrees while lifting.

 Otherwise circle 1.0.

5. Copy the numbers you have circled in steps 2, 3, and 4.

6. Is the weight lifted less than the lifting limit (5)?
 - Yes – OK
 - No – HAZARD

 \[\text{Weight Lifted} \times \frac{1}{1.0} \times \frac{1}{0.85} = \text{Lifting Limit} \]

 Des Moines Water Works
 Water You Can Trust for Life
Temperature Affects Overexertion

- Risks:
 - Dehydration
 - Cramps
 - Heat Exhaustion
 - Heat Stroke
Temperature Affects Overexertion

Permissible Heat Exposure Threshold Limit Values
(Values are given in degrees Centigrade WBGT (Fahrenheit)]

<table>
<thead>
<tr>
<th>Work- Rest Regimen</th>
<th>Light</th>
<th>Moderate</th>
<th>Heavy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Continuous work</td>
<td>30.0</td>
<td>26.7</td>
<td>25.0</td>
</tr>
<tr>
<td></td>
<td>(86.0)</td>
<td>(80.1)</td>
<td>(77.0)</td>
</tr>
<tr>
<td>75% Work, 25% Rest/Hour</td>
<td>30.6</td>
<td>28.0</td>
<td>25.9</td>
</tr>
<tr>
<td></td>
<td>(87.1)</td>
<td>(82.4)</td>
<td>(78.6)</td>
</tr>
<tr>
<td>50% Work, 50% Rest/Hour</td>
<td>31.4</td>
<td>29.4</td>
<td>27.9</td>
</tr>
<tr>
<td></td>
<td>(88.5)</td>
<td>(85.0)</td>
<td>(82.2)</td>
</tr>
<tr>
<td>25% Work, 75% Rest/Hour</td>
<td>32.2</td>
<td>31.1</td>
<td>30.0</td>
</tr>
<tr>
<td></td>
<td>(90.0)</td>
<td>(88.0)</td>
<td>(86.0)</td>
</tr>
</tbody>
</table>

Des Moines Water Works
Workload & Heart rate

<table>
<thead>
<tr>
<th>Work Load</th>
<th>Heart rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resting</td>
<td>60-70 bpm</td>
</tr>
<tr>
<td>Low</td>
<td>75-100 bpm</td>
</tr>
<tr>
<td>Moderate</td>
<td>100-125 bpm</td>
</tr>
<tr>
<td>High</td>
<td>125-150 bpm</td>
</tr>
<tr>
<td>Very High</td>
<td>150-175 bpm</td>
</tr>
</tbody>
</table>
Fatigue Effect on Overexertion

- Fatigue is often a result of exertion
- Fatigue may contribute to Over Exertion
Stress Effect on Overexertion

- Stress can be a result of exertion
- Stress may contribute to Overexertion
For More Information

- http://www.lni.wa.gov/safety/
- www.nsc.org
Thanks for your interest in preventing overexertion injuries!